Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives
نویسندگان
چکیده
Collagen is the main structural protein of most hard and soft tissues in animals and the human body, which plays an important role in maintaining the biological and structural integrity of the extracellular matrix (ECM) and provides physical support to tissues. Collagen can be extracted and purified from a variety of sources and offers low immunogenicity, a porous structure, good permeability, biocompatibility and biodegradability. Collagen scaffolds have been widely used in tissue engineering due to these excellent properties. However, the poor mechanical property of collagen scaffolds limits their applications to some extent. To overcome this shortcoming, collagen scaffolds can be cross-linked by chemical or physical methods or modified with natural/synthetic polymers or inorganic materials. Biochemical factors can also be introduced to the scaffold to further improve its biological activity. This review will summarize the structure and biological characteristics of collagen and introduce the preparation methods and modification strategies of collagen scaffolds. The typical application of a collagen scaffold in tissue engineering (including nerve, bone, cartilage, tendon, ligament, blood vessel and skin) will be further provided. The prospects and challenges about their future research and application will also be pointed out.
منابع مشابه
Mechanical performance of three-dimensional bio- nanocomposite scaffolds designed with digital light processing for biomedical applications
Introduction: The need for biocompatible and bioactive scaffolds to accelerate the regeneration and repair of fractured bones has been considered for bone tissue engineering applications during recent decades. The new methods were developed to produce scaffolds to improve the tissue quality, size of cavities, control the porosity and increase the scaffold compressive strength u...
متن کاملBone Tissue Engineering: a Mini-Review
Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...
متن کاملبیان ژنهای کلاژن یک- دو، اگریکان و SOX9 سلولهای بنیادی مزانشیمی تمایزیافته روی داربستهای مختلف زیستی
Background: Stem cells represent an ideal cell source for application in tissue engineering and regenerative medicine due to their ability to proliferate and differentiate to a wide variety of cell lineages. With recent development of medical sciences and tissue engineering, usage of adipose-derived mesenchymal stem cells, their culture and differentiation on suitable scaffolds are considered a...
متن کاملTissue Engineering: A Biological Solution for Tissue Damage, Loss or End Stage Organ Failure
In recent years the science of tissue engineering has emerged as a powerful tool for the development of a novel set of tissue replacement parts and technologies. Recent advances in the fields of biomaterials, stem cell technologies, growth factor field and biomimetics have created a unique set of opportunities for investigators to fabricate lab-grown tissues from combination of extracellular ma...
متن کاملApplication of Electrospun Nanofibrous PHBV Scaffold in Neural Graft and Regeneration: A Mini-Review
Among the synthetic polymers, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microbial polyester is one of the biocompatible and biodegradable copolymers in the nanomedicine scope. PHBV has key points and suitable properties to support cellular adhesion, proliferation and differentiation of nanofibers. Nanofibers are noticeably employed in order to enhance the performance of biomaterials,...
متن کامل